National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Slupkové galaxie a modifikovaná Newtonova dynamika
Bílek, Michal ; Jungwiert, Bruno (advisor) ; Růžička, Adam (referee)
Our work has two recherchive parts. The first is devoted to the shell galaxies and we describe the observational facts here, different models of origin and the possibility of determining the gravitational potential with the use of shells. The second part is on the modified Newtonian dynamics (MOND). We explain what it consists in, its implications and its experimental tests. The third part is devoted to our numerical simulations of a shell system evolution both in the classical and modified dynamics. Our mission is to explain the differences in the two simulation theoretically and to verify, whether the result of the modified simulation oppose the observed shells around the galaxy NGC 3923. The conclusion is it doesn't, but our test is not very strong.
Perturbed stellar motion in dense star clusters
Pavlík, Václav ; Šubr, Ladislav (advisor) ; Davies, B. Melvyn (referee) ; Portegies Zwart, Simon (referee)
Star clusters are thought to be the birthplaces of stars as well as the building blocks of galaxies. They typically consist of thousands to millions of stars bound together by self-gravity. These systems evolve on the scale of Myr to Gyr, there- fore, it is impossible for us to see any change in their global evolution even within hundreds of human lifetimes. Although the equations of motion of stars in a star cluster are simple New- tonian, it is impossible to predict precisely history of any star within them to any point in the future. Therefore, we may either compare the observations of different star clusters at different age, we may invent theoretical approaches and analytical predictions, or we must follow their evolution numerically (e.g. with direct N-body integrators) which is the main focus of my research and this thesis. First, we follow the evolution of star clusters in general while coming up with a novel method to estimate their characteristic timescale (i.e. the time of core collapse) based on global parameters. The core collapse is directly linked to the formation of hard binary stars, thus, we focus on their analysis as well. We also follow several recent observational results: (i) ALMA observations of the Serpens South star-forming region indicate that star clusters are born mass...
Perturbed stellar motion in dense star clusters
Pavlík, Václav ; Šubr, Ladislav (advisor) ; Davies, B. Melvyn (referee) ; Portegies Zwart, Simon (referee)
Star clusters are thought to be the birthplaces of stars as well as the building blocks of galaxies. They typically consist of thousands to millions of stars bound together by self-gravity. These systems evolve on the scale of Myr to Gyr, there- fore, it is impossible for us to see any change in their global evolution even within hundreds of human lifetimes. Although the equations of motion of stars in a star cluster are simple New- tonian, it is impossible to predict precisely history of any star within them to any point in the future. Therefore, we may either compare the observations of different star clusters at different age, we may invent theoretical approaches and analytical predictions, or we must follow their evolution numerically (e.g. with direct N-body integrators) which is the main focus of my research and this thesis. First, we follow the evolution of star clusters in general while coming up with a novel method to estimate their characteristic timescale (i.e. the time of core collapse) based on global parameters. The core collapse is directly linked to the formation of hard binary stars, thus, we focus on their analysis as well. We also follow several recent observational results: (i) ALMA observations of the Serpens South star-forming region indicate that star clusters are born mass...
Slupkové galaxie a modifikovaná Newtonova dynamika
Bílek, Michal ; Jungwiert, Bruno (advisor) ; Růžička, Adam (referee)
Our work has two recherchive parts. The first is devoted to the shell galaxies and we describe the observational facts here, different models of origin and the possibility of determining the gravitational potential with the use of shells. The second part is on the modified Newtonian dynamics (MOND). We explain what it consists in, its implications and its experimental tests. The third part is devoted to our numerical simulations of a shell system evolution both in the classical and modified dynamics. Our mission is to explain the differences in the two simulation theoretically and to verify, whether the result of the modified simulation oppose the observed shells around the galaxy NGC 3923. The conclusion is it doesn't, but our test is not very strong.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.